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KEYWORD Summary The screening of common genetic polymorphisms among candidate genes for AIDS
AIDS restriction genes pathology in HIV exposed cohort populations has led to the description of 20 AIDS restriction
(ARGs) genes (ARGs), variants that affect susceptibility to HIV infection or to AIDS progression. The

combination of high-throughput genotyping platforms and the recent HapMap annotation of
some 3 million human SNP variants has been developed for and applied to gene discovery in
complex and multi-factorial diseases. Here, we explore novel computational approaches to
ARG discovery which consider interacting analytical models, various genetic influences, and
SNP-haplotype/LD structure in AIDS cohort populations to determine if these ARGs could have
been discovered using an unbiased genome-wide association approach. The procedures were
evaluated by tracking the performance of haplotypes and SNPs within ARG regions to detect
genetic association in the same AIDS cohort populations in which the ARGs were originally
discovered. The methodology captures the signals of multiple non-independent AIDS-genetic
association tests of different disease stages and uses association signal strength (odds ratio or
relative hazard), statistical significance (p-values), gene influence, internal replication, and
haplotype structure together as a multi-facetted approach to identifying important genetic
associations within a deluge of genotyping/test data. The complementary approaches perform
rather well and predict the detection of a variety of undiscovered ARGs that affect different
stages of HIV/AIDS pathogenesis using genome-wide association analyses.
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The discovery that HIV entered cells by binding first to
CD4 then to CCR5 was pronounced in simultaneous articles
by five outstanding research groups in 1996 in the pages of
Science, Nature, and Cell [1—6]. This seminal announce-
ment led immediately to the discovery of CCR5-A32, the
first human ARG by which homozygous carriers were near
completely resistant to HIV-1 infection, regardless of the
extent of exposure [7—9]. Since then researchers in the NCI’s
Laboratory of Genomic Diversity have used genetic associa-
tions studies investigating candidate genes with assembled
HIV/AIDS cohort populations (~10,000 study participants) to
describe some 20 AIDS restriction genes (ARGs) that involve
HIV entry, innate or acquired immunity, and HIV transcrip-
tional regulation (Table 1) [10—13]. Demonstrated genetic
resistance by human variants in HIV entry receptors has
led to the birth of a new generation of anti-HIV therapy,
termed HIV entry inhibitors, including fuzeon-T20 maravi-
roc, (approved for salvage AIDS therapy by US-FDA), and
several compounds now in clinical trials [14—20].

The ARG discoveries have become a harbinger for genetic
association studies in other complex genetic diseases includ-
ing cancers, infectious disease such as hepatitis B and C,
malaria, and chronic degenerative diseases. Yet all the ARGs
discovered to date involve the candidate gene approach
whereby advances in virology, immunology, structural biol-
ogy, or model systems have pinpointed potential loci that
collaborate with HIV in pathogenesis. Further, the known
ARGs account for approximately 10% of the epidemiological
variance that characterizes AIDS pathogenesis [10,21]. This
means there are 10 times more undiscovered influences for

the dynamics of AIDS yet to be discerned than the known
ARGs can explain.

The Human Genome Project provided a draft sequence
initially in 2001 and a more polished completed version in
2003 [22]. Included in the human genome annotation has
been the assessment of some 9 million single nucleotide
polymorphisms (SNPs) and their linkage disequilibrium (LD)
based non-random association in the 2006 release of the
NHGRI-funded HapMap project (Phase Il) [23,24]. The com-
bination of high-throughput genotyping platforms and the
recent HapMap annotation of some 3 million human SNP vari-
ants have been developed for and applied to gene discovery
in complex and multi-factorial diseases. Varying opinions
have emerged within the human genetic literatures as to
the ideal strategy for genome-wide association (GWA) in
complex multi-factorial diseases such as AIDS [25—33]. A
particular challenge is the avoidance of false positive dis-
ease association signals that can arise due to statistical
fluctuations that fail to replicate and can mislead the field
[34—37]. As a prelude to the transition from candidate
gene detection (Table 1) to GWA based ARG discovery, we
explore some of these issues empirically with assembled
AIDS cohorts and known ARGs.

Genome-wide association prospects

A major challenge for genome-wide genetic association
studies involves the efficiency of linkage disequilibrium (LD)
with adjacent ‘‘proxy’’ SNPs to identify disease gene causal

Table 1 Human AIDS restriction gene (ARGs) that affect HIV-1 infection, AIDS progression, and AIDS outcome
Gene Allele Mode Effect Time
(1) CCR5 A32 Recessive Prevent infection =
CCR5 A32 Dominant Prevent lymphoma Late
CCR5 A32 Dominant Delay AIDS Overall
(2) CCR5P P1 Recessive Accelerate AIDS Early
(3) CCR2 64/ Dominant Delay AIDS Overall
(4) SDF1 JA Recessive Delay AIDS Late
(5) EOTAXIN-MCP1 Hap7 Dominant Enhance infection —
(6) RANTES —403A Dominant Accelerate AIDS Overall
In1.1C Co-dominant Accelerate AIDS Overall
(7) HLA A,B,C, ‘‘Homozy”’’ Co-dominant Accelerate AIDS Overall
(8) HLA B*35Px Co-dominant Accelerate AIDS Overall
9) HLA B*57 Co-dominant Delay AIDS Overall
(10) HLA B27 Co-dominant Delay AIDS Overall
(11) KIR 3DS1 Epistatic (Bw4-801) Delay AIDS Overall
(12) IFNG 1797 Dominant Accelerate AIDS Overall
(13) IL10 5A Dominant Limit infection —
IL10 5A Dominant Accelerate AIDS Late
(14) CXCR6 E3K Dominant Accelerate PCP Late
(15) APOBEC3G H186R Recessive Accelerate AIDS Overall
(16) TSG101 Hap2 Dominant Accelerate AIDS Early
(17) DCSIGN —336T Dominant Decrease infection =
(18) TRIM5 Hap4 Dominant Increase infection —
(19) Cul5 Hapl Co-dominant Accelerate CD4 loss —
(20) PP1A (cylophilinA) SNP-4 Dominant Accelerate AIDS —

Primary citations in [10—12,47—52].
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or operative oSNPs; that is, to track and detect genetic
influence above the background of statistical fluctuations
necessarily associated with the large numbers of associa-
tion tests (oSNP is the operative/causal SNP or indel variant
that confers resistance/susceptibility to HIV/AIDS). The dif-
ficulty is emphasized by genetic association studies that
fail to replicate due to low case numbers, low frequencies
of oSNPs, low relative risk of the oSNP-bearing genotypes
for the disease, and with mis-identification of the oSNP
versus the proxy-p SNPs [10,33—37]. Further, many GWA
studies initially discount very significant associations that
do not achieve ‘‘Bonferoni correction’’ p-values or that
of the most extreme hits, perhaps missing actual genetic
influences in a sea of false positives [38—42]. Although
informative theoretical and simulation approaches to these
issues have appeared, an empirical test of the pitfalls and
strengths of GWA would be illuminating. To accomplish such
an experiment we examined how well adjacent SNPs, multi-
SNP-haplotypes in the region, and a well-characterized
study population (cohorts used to implicate the original
ARGs) would enable determination of a true genetic asso-
ciation if the oSNP had been unknown.

We designed a ‘‘pilot study’’ where 306 SNPs spaced
at 15—18kb density across the regions of eight previously
validated ARGs, (Table 2), were genotyped and tested for
association with different stages of HIV/AIDS disease. Cer-
tain ARGs have few neighboring genes (IL10-5A, SDF 1), while
others are nested within gene clusters (CCR2-64I/-CCR5-
P1-CCR5-A32; EOTAXIN-MCP1-MCP2; Fig. 1. SNP genotypes
were assessed among 2139 patients at risk for AIDS from
the epidemiological study cohorts originally used to discover
the ARGs [10—12]. Pair-wise LD was determined, haplotype
blocks were delineated, and haplotypes were defined by
their included SNP alleles. Our goal was to explore and
attempt to answer the following questions: (1) How well
and how frequently do we track the oSNP with one or more
demonstrated pSNP variants on haplotypes in strong LD with
the causal oSNPs, and how often would we miss it? (2) Given
a haplotype structure of a given candidate gene region,
do haplotype associations improve chances for oSNP detec-
tion? (3) Can we develop adequate computational routines
that facilitate inspection and interpretation of very large
numbers of genetic association tests? (4) What are the impli-
cations of these empirical association tests for feasibility
and strategy of GWA studies for AIDS or for other complex
diseases?

Detecting known ARGs using close adjacent
SNPs

A group of 306 SNPs flanking each of seven ARGs on five
chromosomes (Table 2) plus a region selected as a negative
control for AIDS (chromosome 7q36 containing CFTR gene)
were genotyped in 2139 particularly informative European
American study participants (based on clinical assessment
of AIDS progression, see Supplemental Methods) using an
Illumina (243 SNPs) or Sequenom (92 SNPs) genotyping plat-
forms (Table 2, Supplemental Table 1). The average density
is 1SNP/17 kb with block sizes, number of blocks, num-
ber of haplotypes, mean haplotype size, and range for
each region listed in Table 2. Fig. 1 shows ARGBROWSER,

Table 2 Patterns of SNP and haplotype variation in six regions Including 8 ARG variants and a control CFTR region?

SNP density (kb)  Haplotypes®?

No. SNPs

Length (kb)

Map coordinates

ARG-0SNPP

Chr region

Hap block length (kb)

Number

qter

pter

Range

Mean

Haps
106
262
162

Blocks

11.1-146.6
11.9—189.9
29.6—-262.7
25.2—-112.9

5.5—318.2
70.0—202.6

75.6

13
34
19
13
28
21

533 33 16.1
68

1,115

204,384,080

203,851,217

IL10-5'A

1q31-32
3p21-22

102.8
118.4

16.4

46,663,063

45,548,733

CCR5/2 (A32; P1; 64I)

SDF1-3'A
EOTAXIN-Hap7

49 19.5

956
584

1,402

44,598,838

43,642,225

10q11

56.4
107.6

88
214

32,967,726 40 14.6

34,374,495
117,410,794

SUM:

32,387,585

17q12E

19.5

32,976,593
116,639,477

RANTES-409:In1.1c

17q12R
7q36

121.78

204

44 17.5

771

CFTR?

Overall: 5.5—318.2

Avg. 101.8

1010

@ The CFTR region on chromosome 7 serves as a negative control for the ARG discovery since this region, though well studied, has no anticipated or demonstrated influence on HIV/AIDS.

128
b For details of map region and haplotype construction, see Supplemental Methods and Supplemental Fig. 1, Supplemental Tables 2 and 3.

306 Avg. 17.3

5,361
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Figure 1

ARGBROWSER for CCR2/5 chromosome 3 region. Top-LD from Haploview; bottom from BLOCKHEAD; see Supplemental

Methods. Gene coordinates follow UCSC human genome browser. Red triangles — oSNPs; blue triangles — pSNPS in LD with oSNP;
black triangles — adjacent SNPs typed across the region. Red bars — haplotype blocks with number of included haplotypes listed
above (see Supplemental Tables 2 and 3) Yellow bars are **NEW’’ blocks that appear from population genotypes when oSNP is not

considered in haplotype construction.

a generic genome browser display of physical genetic map
of the CCR2/5 chromosome-3 region, the included SNPs
genotyped, pair-wise linkage disequilibrium detected, and
the discerned overlapping haplotype block structure of the
SNPs as described in the Supplemental Methods. The SNP
genotypes were used to define haplotypes and haplotype
blocks within each ARG region (N =1010 haplotypes; Table 2,
Supplemental Tables 2 and 3). Then haplotypes were rebuilt
excluding the oSNP from the data to produce a second
group of haplotypes (N=997 haplotypes without the oSNP;
Supplemental Tables 2, 3 and 7).

A total of 136 non-independent statistical association
tests were designed to reveal genetic influences of previ-
ously published and validated ARGs (Table 3; Supplemental
Tables 4 and 5) with various AIDS outcomes. The tests reflect
four stages of HIV/AIDS pathogenesis: (1) HIV-1 infection,
12 tests; (2) AIDS progression using categorical groups, e.g.
fast versus slow progressors to AIDS post-HIV infection, 28
tests; (3) survival analysis — 72 tests; and (4) AIDS defin-
ing disease or sequelae — 24 tests. Every SNP (including
the oSNP and designated pSNP) plus every haplotype were
tested for each of the 136 AIDS association tests. In all we
determined 654,534 genotypes, and performed 41,616 SNP
tests, 137,360 Hap tests (+0SNP), and 135,592 Hap tests
(for discerned haplotypes after oSNP was removed), a total

of 314,568 genetic association tests. Previously published
hazard/odds ratios, p-values, number of study participants,
and citation for each oSNP reported to implicate each ARG,
plus the same values for the present study population are
presented in Supplemental Table 6 as a starting point for
assessment of pSNP and haplotype analyses.

Computational tools for ARG discovery

Two new computational approaches, ARGARRAY and
ARGRANK were developed to identify the genetic associ-
ations from GWA studies. ARGARRAY visually displays the
SNP-genetic association signal strength (p-value) for the 136
ARG tests in a horizontal line of squares where the color
(heat plot) discriminates the statistically strong associa-
tions from the weaker and non-significant effects (Fig. 2).
To examine a genomic region, the horizontal heat plots
for adjacent SNPs are aligned in the same order as the
SNP markers occur on the chromosome. Therefore, all the
adjacent markers irrespective of their LD relationship can
be inspected together in a two-dimensional color matrix
that captures 136 AIDS association tests (horizontal axis)
and each SNPs or haplotype (vertical axis). Clusters of
highly significant genetic associations (beige — p > 0.05; yel-
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Figure 2  (a) ARGARRAY is a computational toll for visualization of the p-values for multiple non-independent genetic association tests (Table 3) for each SNP as a color ‘‘heat’’
plot compared to adjacent SNPs across tested gene region. This display captures replicated association signals derived from multiple test associations as well as multiple proxy
SNPs in linkage disequilibrium with the oSNP (see text). Here, we depict ARGARRAY for 136 AIDS association tests (top, see Table 3 and Supplemental Tables 4 and 5) assessed
for 44 SNPs (left) spaced at 17 kb across the ‘‘negative control’’ CFTR gene region on chromosome 7 (5984 SNP-test combinations). We also add 4 tests for Hardy—Weinberg
Equilibrium (HWE) on the left. A physical map of the SNPs, Haps, LD and map coordinates for the chromosome 7 CFTR region is presented in Supplemental Fig. 1a. Color key
indicates significant p-values of increasing significance; (b) ARGARRAY for chromosome 1-IL10 region; oSNP names on Y-axis are red; pSNPs are blue; (c) ARGARRAY for chromosome
3, including CCR5-A32, CCR5-P1 and CCR2-64I. Colors of SNPs as in (b) plus green for SNPs with D’ > 0.8 with oSNPs, but located outside haplotype blocks defined in Supplemental
Fig. 1c, and Supplemental Tables 2 and 3.
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Table 3

List of 136 genetic association tests used to input ARGARRAY and ARG RANK

Genetic hypothesis Number of tests

Variables in each test

I. Infection 12 tests
Il. Progression—categorical 28 tests
Ill. Progression—survival 72 tests
IV. Sequelae 24 tests
V. Hardy—Weinberg 4 tests

3 comparisons (SN vs. SC, HREU vs. SC, HREU vs. SN vs. SC) x 4 modes
(allelic, codominant, dominant, recessive)

4 outcomes (CD4 <200, AIDS-1993, AIDS 1987, death) x 7 modes
(allelic—dichotomous, codominant—dichotomous,
codominant—multipoint, dominant—dichotomous,
dominant—multipoint, recessive—dichotomous,
recessive—multipoint).

4 outcomes (CD4 <200, AIDS-1993, AIDS-1987, death) x 3 modes
(codominant, dominant, recessive) x 6 populations (Euro. Amer.,
homosexuals, hemophiliacs, MACS, MHCS, SFCC)

6 AIDS-defining conditions (CMV, KS, lymphoma, Mycobacterial
infection, OIl, PCP) x 4 modes (allelic, codominant, dominant,
recessive)

4 (All subjects; SC, SN, HREU)

See also Supplemental Tables 4 and 5.

Abbreviations SC — seroconvertor; SP — seroprevalents; HREU — high risk exposed uninfected; Ol — opportunistic infection; PCP —
pneumocystis carnii pneumonia; KS — Kaposi’s sarcoma; CMV — cytomegalovirus. MACS, MHCS, SFCC AIDS cohorts see reference [10].

low <0.05; orange — p<0.01; red — p<0.001; dark blue
p<0.0001; black p<0.00001) for both association tests and
LD SNPs are easily drawn to the eye for closer inspec-
tion.

ARGARRAY results for SNPs across the ARG regions are
illustrated in Fig. 2, and tabulated in Table 4. The ‘‘negative
control’’ region Chromosome 7-CFTR (Fig. 1a) shows a back-
ground pattern with 190 beige [p <0.05] squares (~3.2% of
5984 test combinations) and 38 (0.6%) of the tests show-
ing [p<0.01] scores (Supplemental Table 8). This lower
than expected incidence (we expect 5% and 1%, respec-
tively) reflects the non-independence of the cumulative ARG
association tests. The ARGARRAY for chromosome 1-/L10
illustrates a positive result where both oSNPs and pSNPs
show multiple [p < 0.01] signal squares for HIV infection, pro-
gression and sequelae tests (Fig. 2b). A more dramatic result
came with chromosome-3 which contained three tightly
linked ARGs (CCR5-A32, CCR5-P1, and CCR2 64l) plus a
large backbone of linkage disequilibrium, resulting in 11—38
pSNPs that track the three ARGs (Table 4, Fig. 2c). The
pSNPs include both those within the haplotype blocks (blue
locus labels in Fig. 2b and c) as well as others outside the
blocks but showing D’ > 0.8 with the oSNPs (green in Fig. 2).
The rich colors reflecting multiple highly significant tests
and large LD across the region (Fig. 2c) are in dramatic
contrast to the background of low color for the Chromo-
some 7 region (Fig. 2a). The complete ARGARRAY displays
for SNPs and derivative haplotypes of each ARG region are
presented in (http://home.ncifcrf.gov/ccr/lgd/) and the
counts of [p<0.01] are listed in Table 4 for the oSNPs and
pSNPs.

A second computational tool, ARGRANK, plots five dif-
ferent rank values from the same 136 association tests
(displayed in ARGARRAY) for each SNP or haplotype versus
the position of the SNP on the map (Fig. 3). The algorithm
consists of 5 rank criteria that assess strong genetic asso-
ciations for each SNP (or haplotype) and compare these to
other (SNPs) or haplotypes similarly assessed. The five rank-

ing schemes capture significant p-values as well as relatively
high odds/hazard ratios of a SNP compared to the other 305
SNPs in the screen (see Fig. 3 caption for rank criteria). In
ARGRANK, a low score is desirable (reflected as a downward
dip) as this reflects a higher ranking value.

The ARGRANK results (Fig. 3) tended to affirm the
ascertainment of ARGARRAY. On Chromosome 1-IL10 the
oSNP and two adjacent pSNPs show consistent dips (R <50)
for five infection test ranks and for AIDS survival analy-
ses rankings (Fig. 3a and b) in contrast to all the other
SNPs across the IL10 and other ARG regions. For the ARG-
negative region, chromosome7-CFTR, two of the 44 SNPs
ranked <50 in test 1 (lowest p-value) and in test 3 (highest
OR/p-val) for HIV infection, but not in the other infec-
tion ranks or in other genetic hypotheses (Fig. 3c and d).
Absence of consistent dips across the five ranking schemes
for two stages of HIV/AIDS (Fig. 3c and d) is illustrative
of background statistical noise for ARGRANK. By con-
trast the chromosome-3 CCR5/2 region showed multiple
consistent low ranks (<50) for oSNP plus pSNPs, again
reflecting the ARG signal and extensive LD in the region
(Fig. 3e and f). Complete ARGRANK displays for SNPs, (and
also for haplotypes with and without the oSNP included,
see next section) for each ARG region are presented in
http://home.ncifcrf.gov/ccr/lgd/.

To evaluate haplotype AIDS association detection, we
determined haplotypes and haplotype blocks for each region
(Supplemental Tables 2 and 3). The SNP allele structure for
haplotypes that overlap the oSNP locus for each ARG is pre-
sented in Fig. 4 as well as the haplotype structure imputed
across the same oSNP locus but after the oSNP was removed.
In Table 5, we list haplotype blocks, their included haplotype
frequencies, and an estimated ‘‘percent oSNP representa-
tion’’ (PSR) of a given oSNP-bearing haplotype. For example,
if an oSNP is carried on two haplotypes with frequencies
of 0.1 and 0.2, respectively in the population, the PSR of
the first haplotype is 33.3% and the second 66.7%. Low PSR
and further oSNP dilution in haplotypes where the oSNP is


http://home.ncifcrf.gov/ccr/lgd/
http://home.ncifcrf.gov/ccr/lgd/

Table 4 SNP scores of ARG-ARRAY and ARG-RANK in genetic association test

Chr. region  ARG-oSNP ARG comput. Genetic hypothesis—oSNPs No. pSNPs in LD  Genetic hypothesis—pSNPsP Total #SNP
with oSNPP
Tool INFE PRG-CA PRG-SA SEQ SUM INFE PRG-CA PRG-SA SEQ SUM
(12)2  (28) (72) (24) (12) (28) (72) (24)
1931-32 IL10-5'A ARRAY (p<0.01) 4 0 4 3 11 4 1 0 8 3 12 33
rs 1800872 RANK (1 <50)° 5 0 5 5 15 1 0 1 1 3
3p21-22 CCR5-A32 ARRAY (p<0.01) 9 13 18 0 40 38 22 93 134 22 271 68
rs 333 RANK (1 <50) 5 5 5 0 15 6 11 12 9 38
3p21-22 CCR5-P1 ARRAY (p<0.01) 2 0 0 0 2 11 9 13 21 3 46 68
Rs 1799987 RANK (1 <50) 5 0 0 0 5 1 1 1 4
3p21-22 CCR2-641 ARRAY (p<0.01) O 0 2 0 2 18 34 57 65 10 166 68
Rs 1799864 RANK (1 <50) 2 0 1 0 3 5 4 4 3 16
10qg11 SDF1-3'A ARRAY (p<0.01) O 0 4 0 4 10 0 0 0 1 1 49
Rs 1801157 RANK (1 <50)d 2 2 5 0 9 0 0 3 4 7
17q12-E EOTAXIN-HAP7  ARRAY (p<0.01) O 0 0 0 0 14 3 2 2 0 7 40
rs 4795895 RANK (1 <50)d 2 0 0 0 2 1 1 2 0 4
17912-R RANTES-401 ARRAY (p<0.01) O 0 0 0 0 4 0 0 0 0 0 72
rs 2107538 RANK (1<50)4 0 0 0 0 0 0 0 0 0 0
17912-R RANTES-In1.1c  ARRAY (p<0.01) O 0 0 0 0 8 0 0 0 2 0 72
rs 2280789 RANK (1<50)4 0 0 0 0 0 0 0 0 1 0
7q36-3-.7 CFTR® ARRAY (p<0.01) — — — — 0 44 0 3 22 13 38 44
RANK (1<50)4 — — — — 0 0 1 10 9 20
Sum 306

@ In parenthesis is number of genetic tests.

b pSNPs (D' > 0.8 with oSNP) are highlighted in blue in Fig. 1, and Supplemental Figs. 1—6.

¢ Left—(oSNP) list counts the number ARGRANK schemes (of the five listed in Fig. 3) that the oSNP ranks <50 relative to the other SNPs; Right-number of pSNPs identified for the specific
ARG-0SNPs which rank <50 in 3 of 5 ranking schemes relative to the other 306 SNPs.

d See Supplemental Figs. 5b, 6b, 7b for ARGRANK plots of SDF1, EOTAXIN,RANTES, respectively.

€ Counts for Chr 7 region include all 44 SNPs genotyped (5984 tests).
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Figure 3 ARGRANK is a computational tool that compares extreme genetic association values (maximal odds ratios or minimum
p-values) for a particular SNP across a group of analytical tests for a specific genetic hypothesis (e.g. for 12 HIV infection tests or
72 AIDS progression Survival-Cox Proportionate Hazards Tests, the same test used for ARGARRAY; see Table 3) to the same extreme
values obtained for the other 305 SNPs in the study. The extreme values for each individual SNP are then ranked with respect to all
other SNPs across the five ARG regions and each SNP’s rank position is plotted versus its map coordinate position alongside the other
SNPs in the region. Five different ranking criteria were computed and plotted for each SNP: (1) Rank of the lowest p-value (in 136
genetic association tests — Table 3; Supplemental Table 5) for a given SNP compared to the lowest p-value of the tests for other 305
SNPs; (2) Rank the number of tests where p <0.01 for each SNP versus the number of tests (p <0.01) for the other 305 SNPs; (3) Rank
the sum of OR/p-value for tests with p <0.05 for each SNP versus same for the other 305 SNPs; (4) Rank the maximum OR/p-value
test with p <0.01 for each SNP versus same for other 305 SNPs; and (5) Rank by the mean rank of a SNP in the previous four tests
versus the mean rank of the same for the other 305 SNPs. (a) ARGRANK plots for HIV infection, chromosome 1-IL10, oSNP is red; (b)
ARGRANK plots for HIV-AIDS progression based upon survival analysis Cox proportional hazards, across IL10 region of chromosome
1; (c) ARGRANK plots for HIV infection for SNPs across CFTR region of chromosome 7 for five ranking schemes; (d) ARGRANK plots
for HIV/AIDS disease progression using case: control categories are the same 5 ranking schemes across chromosome 7; (e) ARGRANK
plots for HIV infection across chromosome 3 including oSNPs, CCR5-A32, CCR5-P1, and CCR2-64I; (f) ARGRANK plots for HIV/AIDS
disease progression 3 including oSNPs CCR5-A32, CCR5-P1, and CCR2-64l.
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BRLRRE BelE QeLazege EEPEEL
Block 7-13  #RudE: BEERY  Block 7-11 Block 12-20 285253823 G953 0G g Block 12-19
SSASS 033 hand
hap 0.082 GCAACCG GCACT 0.096 hap3 hap2 0.109 TTGGAGAAA TTGAGAAA 0.109 hap2
hapi 0,076 GOAAGTG — . GTGCC 0.049 hap4 hap3 0.089 TTGAGAGAA TTAGAGAA 0.089 hap3
BoPE 0058 GoGRGER GCGOC 0.044 haps hap4 0.086 TCAAGAGAA TCAGAGAA 0.086 hap4
haps 0.016 GTCGCCG ACACC 0.029 hapé hap5 0.039 ATGAGAAGA ATAGAAGA 0.039 hap5
hap7 0.015 GTCGCCA GCATC 0.022 hap? hap6 0.035 TTGAGGAGA TTAGGAGA 0.035 hap6
ap . : hap7 0.026 TTGGGGAGA TTGGGAGA 0.026 hap7
hap8 0.025 ATGAGAGAA ATAGAGAA 0.025 hap8
CCR2--CCR5
BRNFoR O And R e
I8 8F2RnEES SRR HE IR
hap1 0.166 CAGAAGGIAAG ATCAAAGAAG 0.160 hapi
hap2 0.159 CGGGGAGIGAA GCCGGGGGAA 0.149 hap2
hap3 0.126 CGGGAGGIAAA GCCGGAGAAA 0.125 hap3
hap4 0.109 CGGGGAGIGAG GCCGGGGGTG* 0.115 hap4
haps 0.090 CGGGGAGDGTG GCCGGGGGAG 0.098 hap5 CCL5 (RANTES)
hap6 0.064 AGGGAGAIGTG GTAGGAAGTG 0.060 hap6
hap7 0.058 CGAGAAGIGAG GCCGGAGGAG 0.058 hap7
gapg 0.033 CGAGAAGIGAA GCCGGAGGAA gggg Eapg 8Zag RB3% $2:08xg 8%
ap 0.031 CGGGGAGIGTG ATCAAAGGAA : ap BITTONORD gﬂwm§$vwm3
Balll Gh SRoTERELERE e Go R L DL hepdl Block 104-112 xeﬁﬁ@é%ﬁg mﬁ%eﬁﬁﬁ%% Block 100-109
hap11 0.014 CAGAAGGIAAA —’//;'ATCAAAAGTG 0.011 hapi1 ggppapey preppepp
hap12 0.013 CAGAAGAIGTG hap1 0.599 GGCGGATGA CACGGCGGAA 0.366 hapil
hap2 0.074 GGGGGATGA GGAGGCGGAA 0.191 hap2
hap3 0.065 GGCGAGCAG GGCGGGGGAA 0.075 hap3
hap4 0.038 GGCGGATAA GGCGGCGGAA 0.033 hap4
SDF1 (CCL6) hap5 0.021 AGCGGATGA CGAGGCGGAA 0.031 haps
hapé 0.0177 GGCGAACAA GGAGGCGAGG 0.026 hapé
hap7 0.013 GACGGATGA GGAAGCGGAA 0.024 hap7
= hap8 0.012 GGCGAGCAA GACGGCGGAA 0.021 hap8
wEBnaZy nBunnle CACGGCGAGG 0.020 hap9
goEggny gsasnn CGAGGCGAGG 0.016 hapi0
O NOMNTN
Block 30-36 HOPUREE 838933 Block 30-35 GGAGGCGAAA 0014 hapli
hap1 0.232 CGACGGA CACGGA 0.237 hapi
hap2 0.190 CAGTGGA CGTGGA 0.204 hap2
hap3 0.151 CGGCGGG CGCGGG 0.155  hap3
hap4 0.126 CGGCGCA CGCGCA 0.129 hap4
hap5 0.077 CGGTAGG CGTAGG 0.079 hap5
hap6 0.037 TGGTGGG TGTGGG 0.038 hap6
hap7 0.031 CGGCGGA CGCGCG 0.032  hap?
hap8 0.031 CGGCGCG CGCGGA 0.032 hap8
hap9 0.011 CGGTGGA
Figure 4 SNP composition of haplotypes imputed for five ARG regions studied here. For each region the left haplotype includes the oSNP and the right haplotypes overlap the

oSNP locus but the oSNP is removed before haplotype imputation. Red lines illustrate the fate of oSNP containing haplotypes after the oSNP is removed. Frequency (f) of each
haplotype is listed for all haplotypes. Percent SNP representation (PSR, see text) for the oSNP containing haplotypes is indicated in Table 5.
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haplotype carrying the oSNP is tested. This ‘‘haplotype dilu-
tion’’ effect reduces the strength of the genetic association
signal and would produce false negatives. Perhaps a better
advantage of haplotype definition lies in follow-up oSNP dis-
covery within an associated chromosomal region. For such
a region, saturated SNP genotyping can effectively narrow
shared haplotypes’ overlap among multiple individuals from
an associated disease category, allowing one to close in upon
the oSNP location more precisely.

By combining the results of pSNPs, haplotypes and algo-
rithms for each ARG, 5—6 of the 8 ARGs studied (63—75%)
were detected by pSNP or haplotype association, and a plau-
sible explanation for the ARGs that failed can be offered.

For example, within RANTES gene there occur three differ-
ent AIDS restriction alleles (In1.1C, —403A, and —28) which
produce offsetting influences on AIDS progression [44—46].
Interaction of these alleles was demonstrated in prior anal-
yses and masks the effect in the present study as well
(Supplemental Table 6). The previously reported EOTAXIN-
CCL11 influence on HIV infection [52] was also missed in
our oSNP screen (Supplemental Table 6), although adjacent
pSNPs did signal confirming that the original long haplotype
association requires further haplotype dissection follow-up.
The other ARGs selected did show signals and likely would
have been discovered had they been unknown using the
strategy described here.
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Conclusions

Four principal conclusions can be drawn from our study.
First, the results provide a useful transition from previous
gene discoveries using single candidate gene variants to the
high density GWA discovery in disease cohorts. Second, com-
putational tools (BLOCKHEAD, ARGBROWSER, ARGARRAY,
and ARGRANK) that render the challenge of multimillion-
genotype/test datasets for complex disease gene detection
feasible and tractable were evaluated empirically. The
application of multiple tests about different genetic models
and stages of AIDS pathogenesis adds a useful depth to our
GWA screens by illustrating internal replication of SNPs that
show a strong association signal. Third, this work illustrates
the limits of haplotype-based GWA diminished by haplotype
dilution of oSNPs. The strength of haplotype association
seems to be more in closing in on the oSNP of an associ-
ated region than in detecting association signals in a disease
cohort. Fourth, the pSNP approach works remarkably well in
revealing oSNPs by capturing intrinsic LD around them. The
0oSNPs were detected by proxy almost as well as the oSNPs
themselves and we project a minimum estimate for ARG dis-
covery success as 50—75% of oSNPs with a blind genome scan
of the scale described here (17 kb density, 2139 patients).
These discoveries offer encouragement for the prospects of
new ARG discoveries in the more dense 1000 K+ GWA design
using the approaches described here as well as for other
complex genetic diseases with multiple disease outcomes.
The expectation of GWA studies now being undertaken in
search of undiscovered ARGs is indeed promising.
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